首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2337篇
  免费   384篇
  国内免费   1354篇
安全科学   286篇
废物处理   19篇
环保管理   188篇
综合类   2507篇
基础理论   357篇
污染及防治   191篇
评价与监测   245篇
社会与环境   153篇
灾害及防治   129篇
  2024年   30篇
  2023年   138篇
  2022年   232篇
  2021年   267篇
  2020年   262篇
  2019年   200篇
  2018年   183篇
  2017年   182篇
  2016年   201篇
  2015年   225篇
  2014年   198篇
  2013年   221篇
  2012年   280篇
  2011年   227篇
  2010年   175篇
  2009年   145篇
  2008年   96篇
  2007年   140篇
  2006年   129篇
  2005年   102篇
  2004年   79篇
  2003年   69篇
  2002年   60篇
  2001年   40篇
  2000年   40篇
  1999年   24篇
  1998年   26篇
  1997年   17篇
  1996年   18篇
  1995年   18篇
  1994年   15篇
  1993年   6篇
  1992年   7篇
  1991年   3篇
  1990年   4篇
  1989年   4篇
  1988年   2篇
  1986年   1篇
  1984年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1973年   1篇
  1972年   2篇
  1969年   1篇
排序方式: 共有4075条查询结果,搜索用时 281 毫秒
1.
市政排污空间作为城市公共基础设施的重要组成部分,易积聚可燃气体形成爆炸性环境。结合排污空间的特殊环境条件,采用Fluidyn-MP多物理场数值模拟软件,建立了20 L球形爆炸罐分析模型,通过改变初始温度和初始压力,对排污空间甲烷-空气混合物爆燃特性及其变化规律进行模拟研究。结果表明:初始温度升高导致甲烷-空气混合物最大爆炸压力降低,缩短了到达最大爆炸压力的时间;初始压力增加导致最大爆炸压力急剧升高,并延长了到达最大爆炸压力的时间;最大爆炸压力对初始压力的敏感程度远大于初始温度的影响。此外,随着初始温度和初始压力的升高,爆炸火焰平均传播速度增加,而火焰传播速度对初始温度较敏感。  相似文献   
2.
洪泽湖水体富营养化时空分布特征与影响因素分析   总被引:1,自引:0,他引:1  
通过2014年—2017年对洪泽湖12个水质断面定期调查,采用营养状态指数(TLI)综合评价其水体富营养状态,同时应用主成分分析方法(PCA)分析其富营养化状态的时空变化特征。结果表明,洪泽湖70%以上的调查断面水质全年处于轻度富营养化状态,夏季是其富营养化最严重的季节;洪泽湖年内水体水质差异较大,而其水华特征并未呈现明显差异;洪泽湖富营养化很大程度上受制于营养盐的积累程度,并与湖泊透明度呈现极显著的负相关关系(p0.001),与湖水pH值呈现极显著的正相关关系。  相似文献   
3.
为了解石家庄市2016年春季大气颗粒物的铅污染特征及来源,利用单颗粒气溶胶质谱仪(SPAMS),分析了大气中含铅颗粒的化学成分。结果表明: 研究期间大气环境中含铅颗粒数浓度共出现11次跳跃式升高,跳跃时间段内石家庄均处于轻度污染过程。从成分分析来看,含铅颗粒分为纯铅颗粒、Pb与K(Pb-K)、OC(Pb-OC)、Cl(Pb-Cl)、混合颗粒等八大类。观测结果表明:Pb-K颗粒最多,占到含铅颗粒的84.4%;其次为纯铅颗粒,占比为13.0%。与石家庄市污染源谱库比对进行来源解析,得到Pb-K颗粒主要来自生活垃圾焚烧源, 纯铅颗粒主要来自工业源。结合石家庄市大气污染源排放清单和后向气流轨迹分析,推测含铅颗粒可能来自市区西南方向某区县的生活垃圾焚烧企业。  相似文献   
4.
全(多)氟烷基化合物(per(poly)fluoroalkyl substances,PFASs)在环境各个介质及人体样品中广泛被检出,近年,在室内空气和灰尘中也普遍发现PFASs.研究表明,室内空气中PFASs的含量普遍高于室外空气,室内空气和灰尘中的PFASs可能是室外空气的污染来源及人体暴露源,因此室内环境中PFASs成为环境领域的又一个研究热点.但目前为止,我国还没有开展室内空气中PFASs的相关研究,室内灰尘中PFASs的研究也相对较少.本文就室内空气和灰尘中PFASs的采样与分析方法、污染现状、来源分析及人体暴露等4个方面进行了综合阐述,以期为我国室内环境中PFASs的研究提供参考.  相似文献   
5.
采用2013年环境空气自动监测数据,分析杭州市空气中黑碳质量浓度的变化规律,并对变化特征的产生原因进行探讨。结果表明:黑碳测定年均值为4.10μg/m3,日变化有明显双峰结构,峰值出现在早7时和晚8时左右;从季节看,黑碳质量浓度冬季高(5.20μg/m3)、夏季低(3.00μg/m3);黑碳质量浓度与NO2、CO、PM10、PM2.5显著相关,与O3、风速、气温呈负相关,降水对黑碳的清除作用明显。  相似文献   
6.
In the diurnal lepidopteran fauna of the northern taiga subzone in the western Russian Plain, the species inhabiting primary biotopic complexes typical of this subzone currently account for slightly more than 60% of the total species richness and abundance. A large part of the fauna is represented by the species of more southern origin, whose expansion to the northern taiga was caused by anthropogenic transformation of landscapes between the 12th and 20th centuries and recent climate warming.  相似文献   
7.
电感耦合等离子体质谱法在环境监测中的应用   总被引:2,自引:0,他引:2  
针对ICP-MS技术的使用特点及其近年来在环境监测领域的应用进行综合阐述,并对ICP-MS技术的发展前景作出简单的评述。  相似文献   
8.
基于OMI数据的东南沿海大气臭氧浓度时空分布特征研究   总被引:1,自引:0,他引:1  
基于臭氧监测仪(OMI)卫星反演数据,对2005—2018年东南沿海5省区域大气臭氧柱浓度数据进行提取及分析,探讨其时空分布格局及影响因素.结果表明:①在时间变化上,14年间,该区域大气臭氧柱浓度整体呈先上升后下降的趋势,2005—2013年臭氧柱浓度持续升高,最高值为324.52 DU,高值区不断向南部区域扩大;2013—2018年臭氧柱浓度呈下降趋势,最低值为228.27 DU,但在2017、2018年略有上升.②在空间分布上,臭氧柱浓度自北向南逐渐降低,高值区集中分布在江苏及浙江省北部;低值区集中于福建省南部及广东省大部分地区.③在季节变化上,大体呈现出春夏季高于秋冬季,高值区在春夏季交替出现,秋季略高于冬季,但差异不明显.④稳定性分析表明:研究区臭氧柱浓度整体呈现中部分散、南北部集聚、差异较显著的分布格局.⑤自然因素中,风向、气温均呈现显著正相关,江淮地区的梅雨季节(降水)及华南地区的台风和暴雨也起到显著作用.⑥人文因素中,臭氧柱浓度与地区生产总值、各产业生产总值及机动车保有量均表现出正相关,其中,臭氧柱浓度与第二产业的相关度最高.另外,臭氧柱浓度与NO_x排放量表现出显著相关性.VOC_s对臭氧柱浓度的影响中,工业源是主控因素,交通源和居民源次之,电厂源对臭氧柱浓度的影响最弱.这进一步说明臭氧浓度的变化受到了诸多因素的综合影响,但气温、NO_x及VOC_s的排放是臭氧浓度变化的主导因素.  相似文献   
9.
北京南部城区PM2.5中碳质组分特征   总被引:5,自引:3,他引:2  
为了解《大气污染防治行动计划》实施后北京市大气PM2.5中碳质组分特征,于2017年12月至2018年12月在北京污染较重的南部城区进行了PM2.5连续采样,对其中的有机碳(OC)和元素碳(EC)进行了全面研究.结果表明,北京大气PM2.5、OC和EC浓度变化范围分别为4.2~366.3、0.9~74.5和0.0~5.5 μg ·m-3,平均浓度分别为(77.1±52.1)、(11.2±7.8)和(1.2±0.8)μg ·m-3,碳质组分(OC和EC)整体占PM2.5的16.1%.OC质量浓度季节特征表现为:冬季[(13.8±8.7)μg ·m-3] > 春季[(12.7±9.6)μg ·m-3] > 秋季[(11.8±6.2)μg ·m-3] > 夏季[(6.5±2.1)μg ·m-3],EC四季质量浓度水平均较低,范围为0.8~1.5 μg ·m-3.二次有机碳(SOC)年均质量浓度为(5.4±5.8)μg ·m-3,四季贡献比例范围为45.7%~52.3%,年均贡献为48.2%,凸显了二次形成的重要贡献.随污染加重,尽管OC和EC贡献比例均降低,但浓度水平却成倍升高,OC和EC浓度在严重污染天分别是空气质量为优天的6.3和3.2倍.与非供暖时段相比,供暖时段PM2.5、OC和SOC浓度分别增加了14.4%、47.9%和72.1%,体现了OC对供暖季PM2.5污染的重要贡献.PSCF分析表明,位于北京西南的山西省和河南省部分区域是PM2.5和OC的主要潜在源区,且PM2.5潜在源区更为集中;EC的PSCF高值(>0.7)区域较少,主要位于北京南部,如山东省和河南省部分地区,且北京市及周边地区贡献明显.  相似文献   
10.
京津冀大气污染的时空分布与人口暴露   总被引:4,自引:0,他引:4  
经济的快速发展和城市化导致京津冀地区的空气质量不断恶化,已经引起学术界广泛的关注.为了揭示近年来京津冀地区大气污染状况,本研究基于中国空气质量在线监测分析平台发布的PM_(2.5)、PM_(10)、SO_2、CO、NO_2和O_3_8 h_max长期监测数据,采用统计学的方法分析了2014—2018年京津冀13个市这6种污染物的时空变化特征,结合各城市人口数据,评估了在此背景下该地区PM_(2.5)和O_3_8 h_max的人口暴露风险.结果表明:京津冀地区PM_(2.5)、PM_(10)、SO_2、CO和NO_2近年来整体上呈下降趋势,而O_3_8 h_max则呈上升趋势.总体而言,PM_(2.5)、PM_(10)、SO_2、CO和NO_2表现为冬季最高、春秋季次之、夏季最低的特征,而O_3_8 h_max则表现为夏季春季秋季冬季的特点,并在月变化上呈倒"V"型,从1月份开始逐渐上升,在6月份达到峰值,而后又逐渐下降.空间上,PM_(2.5)、PM_(10)、SO_2、CO和NO_2呈现南高北低的分布特征,而O_3_8 h_max在2014—2016年呈现北高南低的分布特征,但在2017—2018年则呈现南高北低的分布特点.此外,京津冀北部地区PM_(2.5)的来源主要是一次气溶胶,而二次气溶胶是中部地区PM_(2.5)的主要来源.除秦皇岛、承德和张家口外,其他城市细粒子在颗粒物中占的比重较大.随着近年来PM_(2.5)浓度的降低,暴露于高浓度的PM_(2.5)中的人口比例逐年减少,但距离年平均浓度限值还相差很远.除2014年外,暴露在O_3浓度超标情况下的人口在2015—2017年逐渐上升.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号